Chapter 1

First Attempt

1.1 Preamble

Anyone who has taken a Physics course will remember the professor, at some
point in the class, saying ”If we choose a set of units such that C equals one...”
or some other comments about some other constant being set to one.

These comments suggest that there is the possibility that, given the correct
system of units, all of the physical constants could be reduced to one. Such a
system of units could be construed to be the Universal Units of the cosmos.

The difficulty arises when one tries to construct a system of equations con-
taining all of the “pertinent” constants in a complete set. There appear to be
several ways to approach the construction of these equations, but the results
of each method are markedly different, suggesting that something is missing
from the mix.

In the following pages the author will outline the approaches he has taken
and the implications of those results. As this is still a “work in progress” not
all of the conclusions drawn are warranted, and these conclusions should be
looked at closely for logical flaws.

The first decision must be made about which units to include. For each unit
used, one equation will be required, and one constant must be found.



1.2 Units to include

The first issue to address is which units are to be discovered. The current
list includes:

¢ Inertia, or Mass. “M” will be used o represent this unit.

e Distance, or Length. “L” will be used to represent this unit.

e Duration, or Time. “T” will be used to represent this unit.

o Charge, or Potential. “P” will be used to represent this unit.
Let’s start with the mass coupling equations first, adding equations and

constants as we progress. Eventually we will have encugh to answer some
reasonable questions.



1.3 Mass Coupling Equations

The coupling equation for forces between masses is usually written:
' — mima

but for our purposes, we wish to remove the spatial form factor and reduce
the constant to only that part which involves the mass coupling field. This
yields the following, more useful equation:
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With:
. —11 newton meter?
G = 6.6732zx10 ~ kilogram?
then

Yo = e = 1.19210° _hilogram®

newton meter
or, in the base units this becomes:
. 9 kilogram second?®
| Yo = 1.1921(° Kilogram s¢
Our object is to find the set of units where -y is equal to unity. To accomplish
this, a set of conversion factors must be found for each of the units currently
being used.




1.4 Conversion Factors

The Kilogram is an arbitrary unit, chosen for some convenience and defined
by standards, as is Meter, Second, and Coulomb. We want a somewhat less
arbitrary sef of units, for simplicity sake called: Mags, Length, Time, and
Potential. (MLT units, for short, and that doesn’t mean Mutton Lettuce and
Tomato)

These units are to be chosen so that all “fudge factors®, otherwise known
as “multiplicative constants”, become one. This removal makes the relation-
ships in these equations more clear. This would provide a natural set of units
to eliminate these constants, and may provide other insights.

So, how many Kilograms are their in a “natural” Mass unit? M, will be used
to represent this number. Like Kilograms; Meters, Seconds, and Coulombs
will be scaled by the values: Ly, 75, and Py. When we can solve for these 4
variables, v can be reduced to unity, along with other useful constants.



1.5 First Equation

If we muitiply both sides of the above equation for y by:
il
the right side of the equation becomes unity, reducing the equation to:

I3
M’i?% =1 (1)

0
Which gives the first equation needed for the first constant.

Another way to look at this equation is:

MyT§ . 9 kilogram second?®
—L{g)—(l = 11923310 meters

Note: this equation has no charge components, so there is the challenge of
finding & complete set of equations. One way to accomplish this is to assume
that the fundamental unit of charge is some even fraction of the charge on
the electron. Just as we have not seen quarks, we have not seen partially
charged particles, so if the one is possible then so may be the second. In any
case, if the charge on the electron is £, then:

Pe:?’LPO = \,[pX/D ’qcau‘om\ps

There are other reasons for this choice that will become clear as we proceed.
The value of n is yet to be determined. (Quark theory suggests 3)



1.6 Charge Coupling Equations

There is a symmetric equation for charge coupling that is usually presented
in the following form:

F=Kag
As before a slightly different form is desired:

F = 1lag

dmeg T

This removes the spatial component from the constant, and provides one of
more innate interest. This yields equation 2:

8.85x10 12 coulomb® second?

kilogram meters

LaM,
P{]?igo?eo =1 (2)
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1.7 Derived vs Fundamental Constants

One of the challenges of this exercise is in the choosing of the constants which
are to be used. One of the obvious constants to use is the speed of light. We
all know this is a constant, and that making it equal to one is of some use,
but is it a fundamental constant, or is it derived?

From Maxwell’s equations we know that the permeability and permeativity
of free space to the electric field is defined by the two constants: €, and g
and can yield the equation:

ﬁ = C? = 8.94210'% meter? (i)
This suggests that ¢ and pp are the fundamental constants and C is the
derived one. Of course, if ¢y and up are made one by the correct choice of
units, then the value of C becomes unity as well. When the fundamental
constants have been satisfied the derived ones will fall into place naturally.



1.8 Symmetry and New Constants

The mass coupling equation and the charge coupling equation are very sym-
metrical. This implies that -y, is the ” permeability of free space to the gravita-
tional field”. This suggests that there is also a constant for the permeativity.
If gravitationial radiation also propagates at C, then:

"'?6%6 = (C? (4)
Now there are 4 constants and 4 equations from them, although, ag we will
see, this is not sufficient, given that each variable does not appear in every
equation. As a result, we must continue to search for completeness.

1.9 Deriving Three More Equations

In the same way as was done with the first two equations; pp, dp, and A can
yield the following equations:

o = 1261:'10_6 kilogram meler

coulomb?
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I = 1.0546¢1034 hilegram meter”
w0 = (5)



1.10 Solving the Equations

The following five constants:

Yo = 1.1922107 Eilogram second®

rneters

8 853’}10"12 coulomb?® second?

o = kilogram meters
_ —6 kilogram meter
o = 1.26210 i s
dp = 9.38X 1072 Jneter
Eilogram
— —34 kilogram meler?
h = 1.05646x10 o
produce the following 5 equations:
i _ 1 _ M7}
L3Moeg __ , _ PRTE
F§ LoM,
S0 1 — oMo
Modo Lo
Ly My (4)
2
Tph 1 = MpLj (5)
MyLg Toh

Notice that the additional right-hand-sides are available from the unity they
represent. Thus the inverse of one is still one. These additional equations
provide an ease of solution that would otherwise be difficult.



1.10.1 Equation (2) and (3)

As with any pair for the "base” equations, we can produce two relationships.
The first one looks like:

LiMoco _ Piuo
PTE LoMy

Solving this for Py gives:

LiMEg
pl=tiMia
Multiplying by one in the form of E—gﬁj’—’ give the following, more useful form:
4252 2
4 _ LgMg <
Py = T amw (a2)

Until values for M,, Lo, and T are determined, the solution for the value of
Py must wait.

Taking our previous starting point, but using the inverse on the right-hand-
- side yields:

LS’M()&Q . L;%MQ
INED Pyuo
Which can be reduced to:

B=a (a3)

0D

or
o _1 (ad)
To 3
(eom0)
This relationship between Ty and Lg may also be written:
1
Ty = Lo(eopo)? (a5)

(a4) and (ab) will be useful later in solving the remaining equations.
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1.10.2 Equation (1) and (5)

The following can be constructed from equation (1) and (5):
Ldvo _ MoLd

MTE — Toh
and reduces to:
2 _ Lo
Mg = Ty ’th (bl)
Plugging in equation (ad) produces the solution:
MZ =0k (a?)
(e0t20)2

Plugging in the square root of equation (i) and taking the square root of both
sides gives:
1 9 g
My = (70hC)2 = 6.1321077 kilograms (a)

Instead of moving on to equation (4) it will be informative to look at the
previous starting point, with the right-hand-side inverted. This gives:

Livw _ _Tyh
MgTE ™~ Mpld

which reduces to:

12 )
ﬁ = (b2)
Plugging in equation (a5) yields:
3
L§ = 2(eopro)? (8%

inserting the square root of equation (i) and taking the square root of the
result yields:

Ly = (%_ﬁcg)% = 5.62107% meters (8)
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Plugging 3° into (a3) gives:
2_ & 3 2
TO - %(6{]”0)2 (’Y )

inserting the square root of equation (i) and taking the square root of the
result yields:

Ty = (15)? = 1.87210~% seconds (7)

With values for M, Ly, and Tp, Py can now be computed. Plugging these
values into equation (al) yields:

P} = heoC (6)
Qor:
By = (ﬁGOO)% = 8.34210™3 coulombs (6)

With the given values for the constants n comes to: 1.92z10", which is only
4% error for the integer value: 2210,
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